Periodic Solutions for Circular Restricted -Body Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions for Circular Restricted N+ 1-Body Problems

and Applied Analysis 3 the critical point of f(q) in Λ ± is a periodic solution of Newtonian equation (5). Lemma 11. (1) (Gordon’s theorem [19]) Let x ∈ W 1,2 ([t 1 , t 2 ], R K ) and x(t 1 ) = x(t 2 ) = 0. Then for any a > 0, one has

متن کامل

The Periodic Solutions for Planar 2N-Body Problems

and Applied Analysis 3 where k = 1, 2, . . . , N. Equation (9) is equivalent to ω 2 ρk = (∑ j ̸ = k ρk − ρj 󵄨󵄨󵄨󵄨 ρk − ρj 󵄨󵄨󵄨󵄨 3 mj + ω 2

متن کامل

Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem

For the circular restricted three-body problem of celestial mechanics with small secondary mass, we prove the existence of uniformly hyperbolic invariant sets of non-planar periodic and chaotic almost collision orbits. Poincaré conjectured existence of periodic ones and gave them the name “second species solutions”. We obtain large subshifts of finite type containing solutions of this type.

متن کامل

Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem - Part II

We present a method for proving the existence of symmetric periodic, heteroclinic or homoclinic orbits in dynamical systems with the reversing symmetry. As an application we show that the Planar Restricted Circular Three Body Problem (PCR3BP) corresponding to the Sun-JupiterOterma system possesses an infinite number of symmetric periodic orbits and homoclinic orbits to the Lyapunov orbits. More...

متن کامل

Periodic orbits in the concentric circular restricted four-body problem and their invariant manifolds

We give numerical calculations of periodic orbits in the planar concentric restricted four-body problem. It is assumed that the motion of a massless body is governed by three primaries m1, m2 and m3. We suppose that m1 >> m2,m3 and that, in an m1 centered inertial reference frame, m2 and m3 move in different circles about m1 and m1 is fixed. Although the motion of the primaries m1,m2,m3 do not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2013

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2013/173639